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Letters

Comments on “Double-Plane Steps in Rectangular

Waveguides and their Application for Transformers,

Irises, and Filters”

MARKKU T. A. SIPILA, STUDENT MEMBER, IEEE

In the above paper,l Patzelt and Arndt have presented a theory
for the analysis of rectangular waveguide structures consisting of
cascaded double-plane step discontinuities. The theory is based
on Dr. Patzelt’s dissertation [2]. The presentation of the theory
contains severaf errors.

An attempt to derive the matrix equation [1, eq. (6)] was made
because the detailed derivation was not given. The electric and
magnetic fields were obtained from the eigenfunctions (3) accord-
ing to [3]. The transversal fields of the incident and reflected H-

and E-modes in both waveguides were matched at the step
discontinuity. The resulting equations were multiplied in turn by

the electric fields of every H- and E-mode and integrated over
the cross section of the waveguide. Every integral, which included
two different modes in the same waveguide, gave zero because of
orthogonality. The resulting matrix equation was somewhat dif-
ferent from (6) by Patzelt ad Amdt:
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and U and O are, respectively, unit and zero matrices of ap-
propriate size. Other notation, except the matrix Vh,k,,,, is the

same as in [1].
The main difference is that, if we follow Patzelt and Amdt, the

upper right corner submatrix ( Vh~= in [1]) becomes zero, as given
in [2] and [4]. This is not so. Here it is replaced by the matrix
vhek,,,,which is not a zero matrix. In addition, the signs of
several submatrices and diagonal elements are not the same as in
[1].

According to Patzelt and Amdt, their eigenfunctions [1, eq. (3)]
are normalized so that the power carried by a given wave is
proportional to the square of the wave-amplitude coefficients a
and b. We also reauire the vowers of different modes to be.
comparable with each other according to Ia 12 and Ib Iz; therefore,
the eigenfunctions (3) should be multiplied by factors

m’JYMnlkozo for H-modes and &/{m for

E-modes. k. is the free-space wavenumber, and 20 = l/%

=4= is the intrinsic impedance of free space. Patzelt and
Arndt seem to have done this implicitly, but they have not used
the absolute value of the propagation constant yi:im.. This
results in different matrix elements in (2) here and in [1, eqs.
(A5)-(A8)]. However, for propagating modes, the expressions
become equal. In (A6) and (A7), the factor j2~/A should not be
under the square root. This error has been corrected in a later
paper [4].

In order to obtain correct phase angles for the scattering

matrix elements, the eigenfunctions have to be real also for
nonpropagating modes. This is essential if correct results are to
be obtained when combining the cascaded matrices. There are
different ways to normalize the eigenfunctions for nonpropagat-
ing modes and make them real; here it is done by using the
absolute value of y~~jti..

In [1], the propagation constant y~~~~. is defined as
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When combining the cascaded scattering matrices, this causes the
nonpropagating wave amplitudes to increase exponentially, be-
cause the diagonal elements of matrix D are defined as D,, =

exp ( – y,ltr ). If we assume a sign error here, we get the right
amplitudes, but the phases of the propagating waves change into
the wrong direction.

We avoid all these difficulties by defining yj~~m,, the usual
way:

wm.=((w;n)z+(k’”’ )’42ymn

The numerical results given in [1] seem to be correet, and they
have partly been experimentally verified by us. It is, however,
impossible to obtain these results by using the theo~y of Patzelt
and Amdt in the form presented in [1]. Only after making the
above corrections can a good agreement with experimental results
be obtained.

Rep[yl by F. Arndt, U. Tucholke, T. Wriedt, and H. Patzelt3

We wish to disentangle the confusion that the commentator
may possibly have biased in some of the readers by his hasty
assertions.

We clearly describe in our paper [1, eq. (6)] that omly Vh,, and
V~~ are z oer matrices and that all other submatrices exist. This
fc%ows also by a correct interpretation of the common notation
for a transposed matrix [3], i.e., for VT, that, e.g., the row h and
the column e have to be interchanged, too. The definition of the

rpropagation constant given y = jk 1 – ( kC/k) implies evi-

rdently (cf., e.g., [5]) the case y = k, 1 –( k/kC) for k < kC

(evanescent modes), although not explicitly mentioned in the
paper. These cases are included in our program, of course.

Let us state again and definitely that equation (6) in our paper
[1] is correct and reproducible at any time, requiring only a
minimum acquaintance with the topic. Furthermore, we repro-
duce explicitly, for convenience, the related correct coupling
integrals (with j 2 n/ A not under the square root as has already
been corrected in [4])
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Fig. 1. Scattering coefficients of a resonant iris with finite tluckness t.Wave-

guide dimensions: a = 15.799 mm, b = a/2. Iris dimensions: width a’= a/2,

height b’= b/2, 1 = 2 mm. (a) Niagmtude. (b) Phase. + Measured results.
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Fig. 2, Scattering coefficients of a resonant iris with fimte thickness t. Wave-

guide dimensions: same as Fig. 1, IrIs dimensions: a’= a/@, b’= b/fi,

f = 2 mm (a) Magnitude. (b) Phase + Measured results.Germany.
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As a simple example to check the phases, where,
scattering matrices are combined (double-plane step,

(5)

(6)

(7)

(8)

e.g., three
waveguide

section o~ length t,double-plane step), Fig_s.1 and ~ presen~ the
scattering coefficients of the resonant irises with finite thickness t
already shown in our paper but now including the phases. The
measured results are found to be in excellent agreement with the
values theoretically predicted by our program using the theory
presented in our paper [1].

Apart from the above information on the facts, let us add the
following comment: In principle, we agree that criticism can be a
fruitful force to advance scientific knowledge. But, in this in-

stance, the criticism has obviously been based on a failure of
sound research and an unfamiliarity with the related literature.
Maybe the information given above will finally help the commen-
tator to reproduce the results that we have extracted three [1] or
seven [6] years ago and have utilized successfully since then.
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Clarification to “Direct Method of Obtaining

Capacitance From Finite-Element Matrices”

ROBERT KAIRES AND JEFFREY BEREN, l@MBER, IEEE

,4Mract —In the letter by Daly and Helps [1], they suggest that energy

can be minimized on an element-by-element basis. The functional, how-

ever, must be treated globafly beeause energy minimization has meaning

only over the whole system. TM discussion follows Daly and Helps’

reasoning, but on a global basis, and draws different conclusions based on

our work with finite elements.

The electric potential can be found in any three-dimensional
structure having appropriate boundary conditions by minimizing
the variational energy expression [2]

W=:~. DdS. (1)

In the fit+te-element method, the energy in one element can be
written [3]

The electric potential + can be expressed as

(2)

where v, are the unknown nodal potentials and a, are shape
functions. Q is a vector (column matrix) of unknown nodaf
potential values and ~(e) is a square matrix having values

J$y = viz, .Va, dr.
s

The total energy can be summed from the elemental contribu-
tions

w= ~

all
elements

w(’) = :rss.
In partitioned form, this can be written as

where ~P is a column vector of prescribed nodal potentials, and
~, is a column vector of unprescribed nodal potentials. Since ~
is symmetric, the following relations hold:

—

Minimization of the energy leads to [3]

v[1[]—P

4!fP4ff E,
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or

&/frf = – gyp ~ b .

Substituting (5a) into (3) yields

1 1 v
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W, being only a number, is equal to its own transpose; therefore

w=;[Lz’-l[S&@P”
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